Synthesis and characterisation of 1-alkyl-2-imidazoline complexes of noble metals; crystal structure of *trans*-[PtCl₂{N=C(H)N(Et)CH₂CH₂}(PEt₃)] *

Bekir Çetinkaya, ^a Engin Çetinkaya, ^a Peter B. Hitchcock, ^b Michael F. Lappert ^b and Ismail Özdemir^a

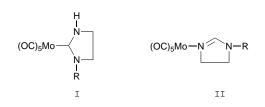
^a Department of Chemistry, Inönü University, 44280-Malaya, Türkiye

^b The Chemistry Laboratory, University of Sussex, Brighton BN1 9QJ, UK

Lappert^b and e J, UK ALTON

 $\label{eq:linear} \begin{array}{l} \mbox{Treatment of a 1-alkyl-2-imidazoline $N(R)(CH_2)_2N=CH$ with a μ-dichloro-dirhodium(1) or -diplatinum(11) complex $[{Rh($\mu$-Cl)(cod)}_2]$ or $[{Pt($\mu$-Cl)Cl(PEt_3)}_2]$ gave the mononuclear 1-alkyl-2-imidazoline complex $[{Rh($\mu$-Cl)(cod)}_2]$ or $[{Pt($\mu$-Cl)(Cl(PEt_3)}_2]$ gave the mononuclear 1-alkyl-2-imidazoline complex $[{Rh($\mu$-Cl)(cod)}_2]$ or $[{Pt($\mu$-Cl)(Cl(PEt_3)}_2]$ gave the mononuclear 1-alkyl-2-imidazoline $[{Rh($\mu$-Cl)(cod)}_2]$ or $[{Pt($\mu$-Cl)(Cl(PEt_3)}_2]$ gave the mononuclear 1-alkyl-2-imidazoline $[{Rh($\mu$-Cl)(cod)}_2]$ or $[{Pt($\mu$-Cl)(Cl(PEt_3)}_2]$ gave the mononuclear 1-alkyl-2-imidazoline $[{Rh($\mu$-Cl)(cod)}_2]$ or $[{Rh($\mu$-Cl)(cod)}_2]$ or$

 $[RhCl{\dot{N}=C(H)N(R)CH_2CH_2}(cod)]$ (R = Et **1a** or CH₂Ph **1b**) or *trans*- $[PtCl_2{\dot{N}=C(H)N(R)CH_2CH_2}(PEt_3)]$ (R = Et **2a** or CH₂Ph **2b**) (cod = cycloocta-1,5-diene). A single-crystal X-ray diffraction study of **2a** revealed it to have a square-planar geometry about platinum, the imidazoline ring being coplanar with this plane, and a Pt–N distance of 2.088(11) Å; the Pt–P bond length of 2.231(4) Å indicates that the imidazoline ligand has a marginally stronger *trans* influence than analogues of its isomer such as $CN(R)(CH_2)_2NR$. The rhodium complexes **1a** and **1b**


have been shown to catalyse cyclopropanation of styrene and ethyl diazoacetate in high yields.

The co-ordination chemistry of imidazole and related compounds, including benzimidazoles, benzoxazoles and benzthiazoles, has been extensively studied in part because of their role in aspects of catalysis and biomimetics.^{1,2} Since some of these heterocycles are corrosion inhibitors, their metal complexes may also have some relevance to anticorrosion mechanisms.³ In addition, some have a variety of pharmacological effects, such as antitumour activity; for instance bis(acetato)bis(imidazole)copper(II)^{4,5} and imidazolium tetrachlorobis(imidazole)ruthenate(III)⁶ were reported to be highly active antagonists toward tumour models. The presence of planar nitrogen-centred ligands L in *trans*-[PtCl₂L₂] often appeared to enhance their cytotoxity relative to the corresponding *cis* isomer or to *cis*-[PtCl₂-(NH₃)₂].⁷

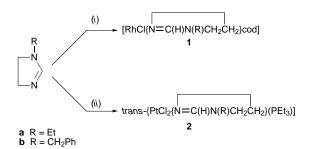
Imidazole and its derivatives are bound through N^3 of the imidazole ring.^{8,9} However, conversion of an imidazolemetal complex into the isomeric (imidazolium ylide)metal complex, having a C²–M bond, has been described.¹⁰ In contrast, results on the related chemistry of 1-alkyl-4,5-dihydroimidazoles, the *N*-(or 1-)alkyl-2-imidazolines, are as yet much more sparse. At the outset of this work the only previous studies had been concerned with the bidentate imidazoline complexes of some late first-row transition metals.^{11,12} Recently, the reaction of 2-phenylimidazoline with some palladium(II) complexes yielding cyclometallated products was described.¹³

In 1977 we reported that an attempt at an *in situ* synthesis of an NH-substituted imidazolidin-2-ylidene(or carbene)molybdenum(0) complex **I**, containing an Mo{ $CN(R)(CH_2)_2NH$ } moiety, from [Mo(CO)₆], CH(OMe)₂NMe₂ and H₂N(CH₂)₂-NHR led instead to the isomeric *N*-bonded 2-imidazolinemolybdenum(0) complexes **II**;¹⁴ the latter were also accessible from [Mo(CO)₆] and $N(R)(CH_2)_2N=CH$ (R = H or Et) as was [RhCl{ $N=C(H)N(R)CH_2CH_2$ }(cod)] from [{Rh(µ-Cl)(cod)}₂] and $N(R)(CH_2)_2N=CH$ (cod = cycloocta-1,5-diene). The present paper reports an extension of these experiments.

A further reason for our pursuing the present study is that the imidazoline complexes $[RhCl{N=C(H)N(R)CH_2CH_2}(cod)]$ (R = Et **1a** or CH₂Ph **1b**) showed significant selective anti-

bacterial activity¹⁵ and were effective catalysts for cyclisation of (Z)-3-methylpent-2-en-4-yn-1-ol into 2,3-dimethylfuran.¹⁶

In this paper we describe the synthesis, isolation and spectroscopic characterisation of four new 1-alkyl-2-imidazoline complexes of rhodium(I) (**1a** and **1b**) and platinum(II) (**2a** and **2b**) derived from the imidazoline $N(R)(CH_2)_2N=CH$ (R = Et or CH_2Ph) and the molecular structure of *trans*-[PtCl₂{ $N=C(H)N(Et)CH_2CH_2$ }(PEt₃)] **2a**, which we believe provides the first such data on a 1-alkyl-2-imidazolineplatinum(II) complex. The complexes **1a** and **1b** were shown to be effective catalysts for a cyclopropanation reaction.


Results and Discussion

An enetetramine $[=CN(R)(CH_2)_2NR]_2$ (abbreviated as L^R_2) has been shown to behave as a C-centred nucleophile in readily cleaving a di- μ -dichloro-dimetal complex such as $[{Rh}(\mu-Cl)(cod)]_2$ A or $[{Pt}(\mu-Cl)Cl(PEt_3)]_2$ B to give the imidazolidin-2-ylidene(or carbene)metal complex $[RhCl(cod)(L^R)]$ or $[PtCl_2-(L^R)(PEt_3)]$.¹⁷ A similar approach was used in the present study. Thus, 2 equivalents of the imidazoline $N(R)(CH_2)_2N=CH$ (R = Et or CH₂Ph) were heated with **A** or **B** affording the appropriate mononuclear 1-alkyl-2-imidazoline-rhodium(I) **1** or -platinum(II) **2** complex in good yield (Table 1), Scheme 1 [(*i*) or (*ii*)].

Each of the complexes **1a**, **1b**, **2a** and **2b** was obtained in moderate to high yield as air-stable crystals, which were characterised by elemental analysis and IR (Table 1), ¹H NMR (Table 2) and ¹³C-{¹H} NMR (Table 3) spectra; the tables also include corresponding data on the imidazolines $N(R)(CH_2)_2N=CH$ [R = Et (an oil at ambient temperature) or CH₂Ph] which were reported briefly.¹⁸

^{*} Non-SI unit employed: mmHg ≈ 133 Pa.

The IR spectra of each of the four complexes showed an intense absorption band at $1605 \pm 12 \text{ cm}^{-1}$ assigned to v(C=N) which decreased in frequency relative to the free imidazolines in the case of **1a** and **1b**, while for **2a** and **3b** the opposite was the case, which may be because the ligand in the last two complexes is *trans* to a tertiary phosphine rather than an alkene, as in **1a** or **1b**.

Scheme 1 Routes to 1-alkyl-2-imidazoline complexes **1** and **2**: (*i*) [{Rh(μ -Cl)(cod)}₂] (0.5 equivalent), toluene, 110 °C, 2 h; (*ii*) [{Pt(μ -Cl)Cl(PEt₃)}₂] (0.5 equivalent), toluene, 110 °C, 2 h

The ¹H NMR spectral chemical shifts of the metal-bound imidazolines in complexes **1b** and **2b** were found at higher frequency than in the free imidazoline, but the effect was least obvious for the CH_2 protons and was not as marked as in the related imidazole complexes,¹⁹ perhaps due to the aromaticity of the imidazole ligands. The variations in the ¹³C NMR chemical shifts as between **1b** and **2b** on the one hand, and the free imidazoline on the other, were less pronounced.

The ¹³C-{¹H} NMR spectra were particularly diagnostic as to the nature of the bonding in these new complexes, establishing them to be N³-bound 2-imidazolines rather than C²bound imidazolidin-2-ylidenes. Thus, the imino N=CH signal was observed as a singlet at δ 161.3 for [RhCl-{N=C(H)N(CH₂Ph)CH₂CH₂}(cod)] **1b**, but a doublet centred at δ 158.4 for *trans*-[PtCl₂{N=C(H)N(CH₂Ph)CH₂CH₂}(PEt₃)] **2b**, ⁴J(¹³C-³¹P) = 2 Hz. By contrast, in Rh¹-L^R or Pt^{II}-L^R complexes, the carbene carbon atom showed a large ¹³C-¹⁰³Rh or ¹³C-¹⁹⁵Pt coupling constant, *e.g.* ¹J(¹³C-¹⁰³Rh) in the range 38–65 Hz.²⁰

The ³¹P-{¹H} NMR spectra of complexes **2a** and **2b** showed singlets at δ 1.12 and 0.71 with ¹⁹⁵Pt satellites, ¹J(³¹P-¹⁹⁵Pt) = 3345 and 3314.1 Hz, respectively.

Table 1	Yields, melting points, IR	' and analytical data for	the new compounds
---------	----------------------------	---------------------------	-------------------

Yield (%)	M.p. (°C) [b.p. (°C, mmHg)]	$v(C=N)^{a/2}$ cm ⁻¹	Analysis (%) ^b		
			C	Н	N
90	[44-46, 0.5]	1605			
84	39-40	1605	75.5	7.15	17.7
			(75.0)	(7.5)	(17.5)
95	112-113	1595	55.7	6.5	6.0
			. ,		(6.7)
72	120–121	1593			8.95
			. ,		(8.15)
62	92–93	1610			5.8
			(26.9)	(5.25)	(6.15)
88	103-104	1616	35.3	4.95	5.15
			(34.9)	(4.8)	(5.7)
	90 84 95 72 62	Yield (%) [b.p. (°C, mmHg)] 90 [44-46, 0.5] 84 39-40 95 112-113 72 120-121 62 92-93	Yield (%) [b.p. (°C, mmHg)] cm ⁻¹ 90 [44-46, 0.5] 1605 84 39-40 1605 95 112-113 1595 72 120-121 1593 62 92-93 1610	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a As KBr discs. ^b Calculated values in parentheses.

Table 2 Proton NMR chemical shifts (δ) and coupling constants (J/Hz)

	$\frac{\text{Ring}}{\text{C}^2\text{H}} \qquad 4,5\text{-CH}_2$		
Compound			Others
N(Et)(CH ₂) ₂ N=CH	6.76 (s)	2.85 (m), 3.66 (m)	0.96 (t, $J = 7.0$, CH_2CH_3), 2.85 (q, $J = 6.0$, CH_2CH_3)
$N(CH_2Ph)(CH_2)_2N=CH$ 1a	6.70 (s) 7.61 (s)	2.70 (m), 3.70 (m) 3.30 (t, J=11.4), 3.47 (t, J=11.4)	3.67 (s, $CH_2C_6H_5$), 7.1 (m, $CH_2C_6H_5$) 1.1 (t, $J = 7.25$, CH_2CH_3), 1.69 (d, $J = 4.9$), 2.23 (d, $J = 7.4$, cod CH_2), 3.14 (q, $J = 7.25$, CH_5CH_3), 3.79 (s) and 4.37 (s) (cod $C=H$)
1b	7.83 (s)	(t, J = 11.1) 3.20 (t, $J = 10.7$), 3.51 (t, $J = 10.7$)	1.73 (d, $J = 8.6$), 2.39 (d, $J = 4.9$, cod CH ₂), 3.82 (s) and 4.44 (s) (cod C=H), 4.29 (s, $CH_2C_6H_5$), 7.30 (m, $CH_2C_6H_5$)
2a	7.56 (s)	3.3 (t, $J = 10.0$), 4.0 (t, $J = 10.0$)	1.0 (t, $J = 7.0$, CH_2CH_3 , 1.19 (t, $J = 7.6$, PCH_2CH_3), 1.80 (q, $J = 7.6$, PCH_2CH_3), 3.2 (q, $J = 7.0$, CH_2CH_3)
2b	7.78 (s)	3.3 (t, $J = 10.4$), 4.07 (t, $J = 10.4$)	1.20 (t, $J = 7.6$, PCH ₂ CH ₃), 1.80 (q, $J = 7.6$, PCH ₂ CH ₃), 4.33 (s, CH ₂ C ₆ H ₅), 7.32 (m, CH ₂ C ₆ H ₅)

Table 3 $^{13}C-\{^{1}H\}$ NMR chemical shifts (δ) and coupling constants (J/Hz)

	Ring		
Compound	C ² H	4,5-CH ₂	Others
N(Et)(CH ₂) ₂ N=CH	157.2	42.3, 48.6	14.1 (CH ₂ <i>C</i> H ₃), 55.8 (<i>C</i> H ₂ CH ₃)
N(CH ₂ Ph)(CH ₂) ₂ N=CH	157.2	48.6, 52.0	56.1 (CH ₂ C ₆ H ₅), 127.6, 128.2, 128.9 (CH ₂ C ₆ H ₅)
1a	161.1	30.2, 31.6	13.6 (CH ₂ CH ₃), 41.8, 47.4 (cod CH ₂), 50.7 (CH_2 CH ₃), 75.0 (d, $J = 14.4$) and 81.8 (d, $J = 11.7$) (cod CH)
1b	161.3	47.2, 50.9	30.1, 31.4 (cod CH ₂), 51.3 ($CH_2C_6H_5$), 75.1 (d, $J = 13.0$) and 81.9 (d, $J = 11.0$) (cod CH), 127.7, 128.1, 128.8, 134.8 (CH ₂ C_6H_5)
2a	157.7	47.1, 50.7	7.4 (d, $J = 3.1$, PCH_2CH_3), 12.1 (CH_2CH_3), 13.8 (d, $J = 39.4$, PCH_2CH_3), 41.7 (CH_2CH_3)
2b	158.4	47.4, 51.2	7.6 (d, $J = 3.0$, PCH ₂ CH ₃), 13.9 (d, $J = 39.0$, PCH ₂ CH ₃), 51.6 (CH ₂ C ₆ H ₅), 127.8, 128.1, 128.8, 134.8 (CH ₂ C ₆ H ₅)

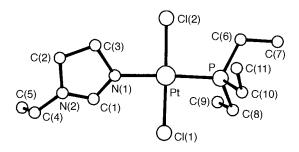
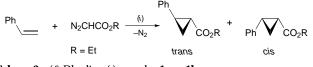
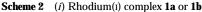


Fig. 1 Structure of *trans*-[PtCl₂{N=C(H)N(Et)CH₂CH₂}(PEt₃)] 2a

Table 4Selected bond lengths (Å) and angles (°) with estimated
standard deviations in parentheses for trans-[PtCl2-
{N=C(H)N(Et)CH2CH2(PEt2)] 2a


Pt-Cl(1)	2.283(4)	Pt-Cl(2)	2.291(5)
Pt-P	2.231(4)	Pt-N(1)	2.088(11)
P-C(6)	1.82(2)	P-C(8)	1.85(2)
P-C(10)	1.83(2)	N(1)-C(1)	1.29(2)
N(1)-C(3)	1.57(2)	N(2)-C(1)	1.33(2)
N(2)–C(2)	1.48(2)	N(2)-C(4)	1.41(2)
C(2)–N(3)	1.51(3)	C(4) - C(5)	1.52(2)
C(6)–C(7)	1.53(3)	C(8)-C(9)	1.56(2)
C(10)-C(11)	1.52(3)		
Cl(1)-Pt-Cl(2)	178.6(2)	Cl(1)-Pt-P	88.7(2)
Cl(1)-Pt-N(1)	88.6(3)	Cl(2)–Pt–P	92.5(2)
Cl(2)-Pt-N(1)	90.2(3)	P-Pt-N(1)	177.0(3)
Pt-P-C(6)	116.1(5)	Pt-P-C(8)	114.1(5)
Pt-P-C(10)	110.7(5)	C(6) - P - C(8)	105.3(7)
C(6) - P - C(10)	106.6(8)	C(8)-P-C(10)	102.9(7)
Pt-N(1)-C(1)	128.1(9)	Pt-N(1)-C(3)	124.8(9)
C(1)-N(1)-C(3)	107(1)	C(1)-N(2)-C(2)	109(1)
C(1)-N(2)-C(4)	125(1)	C(2)-N(2)-C(4)	124(1)
N(1)-C(1)-N(2)	116(1)	N(2)-C(2)-C(3)	104(1)
N(1)-C(3)-C(2)	103(1)	N(2)-C(4)-C(5)	116(1)
P-C(6)-C(7)	116(1)	P-C(8)-C(9)	111(1)
P-C(10)-C(11)	112(1)		


Single crystals of complex **2a** were grown from $CH_2Cl_2-Et_2O$ at ambient temperature. The molecular structure is shown in Fig. 1 and selected bond lengths and angles are given in Table 4. The platinum is in a square-planar environment, with the chlorides *trans* to one another. The Pt–Cl [average 2.287(4) Å] and Pt–P [2.231(4) Å] bond lengths may be compared with those in *trans*-[PtCl₂(L^{Ph})(PEt₃)] **III** [L^{Ph} = $CN(Ph)(CH_2)_2NPh$]; Pt–Cl 2.301(6) (average) and Pt–P 2.291(4) Å].²¹ Hence it appears that the *trans* influence of the 1-ethyl-2-imidazoline ligand in **2a** is slightly greater than that of the carbene (or imidazolidin-2-ylidene) ligand L^{Ph} in **III**.

For the cyclopropanation of alkanes with diazo compounds various efficient transition-metal catalysts have been reported. Although those available have proved useful in many instances, the search for alternatives goes on. Recently, bis(2-oxazolin-2-yl)(pyridine)ruthenium(II) complexes have been introduced as efficient cyclopropanation catalysts, which give good *trans-cis* selectivities.²² Hence, we have checked the new rhodium(I) compounds **1a** and **1b** in the same context (Scheme 2).With 0.9 mol % catalyst at 80 °C styrene gave an excellent yield (91–95%) of the cyclopropanation product with ethyl diazoacetate. The mechanistic details of this catalytic reaction are currently under investigation.

Experimental

Unless otherwise stated, manipulations were carried out under argon using a high-vacuum manifold and conventional Schlenk techniques. Solvents were distilled over appropriate drying agents and thoroughly degassed prior to use. The complexes $[{Rh(\mu-Cl)(cod)}_2]^{23}$ and $[{Pt(\mu-Cl)Cl(PEt_3)}_2]^{24}$ were

prepared by published methods. The 1-alkyl-2-imidazolines $N(R)(CH_2)_2N=CH$ (R = Et or CH₂Ph) were readily prepared from CH(OMe)₂NMe₂ and the appropriate diamine H₂N-(CH₂)₂NHR.¹⁸

The IR spectra were recorded as samples in KBr discs or as Nujol mulls on a Unicam 2100 grating spectrophotometer, NMR spectra, for samples in $CDCl_3$ solution, on a Bruker WM 360 or AC-250SY instrument. Elemental analyses were obtained in the Middle East Technical University, Ankara.

Preparations

1-Ethyl-2-imidazoline. A solution of *N*-ethylethane-1,2diamine (12.55 g, 124 mmol) and $CH(OMe)_2NMe_2$ (19.06 g, 160 mmol) was slowly heated. When the oil-bath temperature reached 75–80 °C, NMe_2H and MeOH began to distil off. The brown residue was distilled at 34–36 °C (0.4 mmHg) to obtain a colourless liquid.

1-Benzyl-2-imidazoline. A solution of *N*-benzylethane-1,2diamine (2.0 g, 13.3 mmol) in cyclohexane (4 cm³) was added to CH(OMe)₂NMe₂ (1.29 g, 15 mmol) and the mixture was heated under distillation conditions, allowing the produced NMe₂H and MeOH to distil off. Then volatiles were removed under vacuum. The residue (1.79 g) was crystallised from toluene (1.5 cm³)–hexane (6 cm³).

(1-Alkyl-2-imidazoline)chloro(cycloocta-1,5-diene)rhodium(I) 1a and 1b. A solution of 1-ethyl-2-imidazoline (0.16 g, 1.6 mmol) in toluene (15 cm³) and [{Rh(μ -Cl)(cod)}₂] (0.40 g, 0.80 mmol) was heated for 2 h under reflux. Hexane (5 cm³) was added to the warm solution. Upon cooling to room temperature yellow-orange crystals of complex 1a (0.47 g) were filtered off, washed with cold hexane (2 × 5 cm³) and dried in a vacuum.

Similarly, from the same rhodium(1) starting material (0.60 g, 1.21 mmol) and 1-benzyl-2-imidazoline (0.38 g, 2.43 mmol), orange crystals of complex **1b** (0.89 g) were obtained.

trans-(1-Alkyl-2-imidazoline)dichloro(triethylphosphine)plat-

inum(II) 2a and 2b. A solution of 1-ethyl-2-imidazoline (0.14 g, 1.43 mmol) in toluene (10 cm³) was added to [{Pt(μ -Cl)-Cl(PEt₃)}₂] (0.56 g, 0.73 mmol) and the mixture was heated for 2 h under reflux. Upon addition of hexane (6 cm³) to the resulting yellow solution and cooling to room temperature, yellow crystals of complex 2a (0.48 g) were filtered off, washed with hexane (2 × 10 cm³) and dried under vacuum.

Yellow microcrystals of compound **2b** (0.56 g) were obtained similarly from 1-benzyl-2-imidazoline (0.20 g, 1.25 mmol) and the same platinum(II) starting material (0.50 g, 0.65 mmol).

Cyclopropanation reactions

In a typical experiment, the catalyst **1** (0.009 mmol) and styrene (20 mmol, 2.3 cm³) were introduced into a Schlenk tube and then ethyl diazoacetate (1 mmol) in styrene (1 cm³) was added. The mixture was stirred in an oil-bath at 80 °C for 4 h. The yields and the ratio of isomers were determined by GC.

Crystallography

Crystal data. $C_{11}H_{25}Cl_2N_2PPt$, M = 482.3, tetragonal, space group *I*4 (no. 82), a = b = 20.997(2), c = 7.549(1) Å, U = 3327.9 Å³, Z = 8, $D_c = 1.93$ g cm⁻³, F(000) = 1856, μ (Mo-K α) = 89.2 cm⁻¹, 293 K.

Data collection, structure solution and refinement. X-Ray diffraction data were collected on a crystal of dimensions $0.3 \times 0.2 \times 0.2$ mm, in a Lindemann capillary sealed under argon, on an Enraf-Nonius CAD4 diffractometer in the θ -2 θ mode with a scan width of $\Delta \theta = (0.8 + 0.35 \tan \theta)^{\circ}$, maximum scan time of 1 min and Mo-K α radiation ($\lambda = 0.71069$ Å). A total of 1112 unique reflections was measured for $2 < \theta < 22^{\circ}$ and +h + k + l; 1010 reflections with $|F^{e}| > 3\sigma(F^{e})$, where $\sigma(F^{e}) = [\sigma^{2}(I) + (0.04I)^{2}]/L_{p}$, were used in the refinement. There was no crystal decay during the data collection. A correction (maximum 1.22, minimum 0.85) for absorption was applied using DIFABS²⁵ after isotropic refinement.

The structure was solved using the heavy-atom routines of SHELX 86²⁶ and non-hydrogen atoms were refined on *F* with anisotropic thermal parameters by full-matrix least squares. Hydrogen atoms were held at calculated positions with $U_{\rm iso} = 1.3 U_{\rm eq}$ for the parent atom. Final parameters were R = 0.026, R' = 0.033, S = 1.26, 154 variables, $w = 1/\sigma^2(F)$, $(\Delta/\sigma)_{\rm max} = 0.01$ and $(\Delta\rho)_{\rm max,min} + 0.57$, -0.65 e Å⁻³ on a final difference map. Programs from the SDP-PLUS package²⁷ were run on a Micro Vax II computer.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.*, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/428.

Acknowledgements

We thank Professor P. H. Dixneuf for helpful discussions, the Leverhulme Trustees for an Emeritus Fellowship (for M. F. L.) and the EPSRC for support.

References

- 1 A. L. Abuhijleh, Polyhedron, 1996, 15, 285.
- K. Nonoyama, W. Mori and M. Nonoyama, *Polyhedron*, 1994, 13, 891; S. Bennett, S. M. Brown, G. Conole, M. Kessler, S. Rowling, E. Sinn and S. Woodward, *J. Chem. Soc., Dalton Trans.*, 1995, 367.
- 3 G. Xue, Q. Dai and S. Jiang, J. Am. Chem. Soc., 1988, 110, 2393; G. Xue, S. Jiang, X. Huang, G. Shi and B. Sun, J. Chem. Soc., Dalton Trans., 1988, 1487.

- 4 J. R. J. Sorrenson, Prog. Med. Chem., 1989, 26, 437.
- 5 H. Tamura, H. Imai, J. Kuwahara and Y. Sugiura, *J. Am. Chem. Soc.*, 1987, **109**, 6870.
- 6 A. Galeano, M. R. Berger and B. K. Keppler, Arzneim.-Forsch., Drug Res., 1992, 42, 821.
- 7 M. van Beusichem and N. Farrell, Inorg. Chem., 1992, 31, 634.
- 8 R. J. Sundberg, R. F. Bryan, I. F. Taylor and H. Taube, *J. Am. Chem. Soc.*, 1974, **96**, 381.
- 9 J. Müller and R. Stock, Angew. Chem., Int. Ed. Engl., 1983, 22, 993.
- 10 F. Bonati, L. A. Oro, M. T. Pinillos and C. Tejel, J. Organomet. Chem., 1994, 465, 267.
- 11 S. S. Tandon, L. K. Thompson, J. N. Bridson and J. C. Dewan, *Inorg. Chem.*, 1994, **33**, 54 and refs. therein.
- 12 J. Bremer, S. Uhlenbrock, A. A. Pinkerton and B. Krebs, Z. Anorg. Allg. Chem., 1993, 619, 1183.
- 13 C. Navarro-Ranninger, F. Zamora, I. López-Solera, A. Monge and J. R. Masaguer, J. Organomet. Chem., 1996, 506, 149.
- 14 P. B. Hitchcock, M. F. Lappert and P. L. Pye, J. Chem. Soc., Dalton Trans., 1977, 2160.
- 15 B. Çetinkaya, E. Çetinkaya, H. Küçükbay and R. Durmaz, Arzneim.-Forsch., Drug Res., 1996, 46, 821.
- 16 B. Çetinkaya, I. Özdemir, C. Bruneau and P. H. Dixneuf, unpublished work.
- 17 M. F. Lappert, J. Organomet. Chem., 1988, 358, 185.
- E. Çetinkaya and M. F. Lappert, *Chemistry and Chemical Engineer-ing Symposium, Abstracts, Kusadasý*, 1989, p. 140.
 F. Bonati, L. A. Oro, M. T. Pinillos, C. Tejel, M. C. Apreda,
- 19 F. Bonati, L. A. Oro, M. T. Pinillos, C. Tejel, M. C. Apreda, C. Foces-Foces and F. H. Cano, *J. Organomet. Chem.*, 1989, 369, 253.
- 20 B. Çetinkaya, P. B. Hitchcock, M. F. Lappert, D. B. Shaw, K. Spyropoulos and N. J. W. Warhurst, *J. Organomet. Chem.*, 1993, 459, 311.
- 21 L. Manojlović-Muir and K. W. Muir, J. Chem. Soc., Dalton Trans., 1974, 2427.
- S.-B. Park, N. Sakata and H. Nishiyama, *Chem. Eur. J.*, 1996, 3, 303;
 H. Nishiyama, Y. Itoh, Y. Sugawara, H. Matsumoto, K. Aoki and K. Itoh, *Bull. Chem. Soc. Jpn.*, 1995, 68, 1247.
- 23 J. Chatt and L. M. Venanzi, J. Chem. Soc., 1957, 4735.
- 24 J. Chatt and L. M. Venanzi, J. Chem. Soc., 1957, 2351.
- 25 N. Walker and D. Stuart, *Acta Crystallogr., Sect. A.*, 1983, **39**, 158. 26 G. M. Sheldrick, SHELXS **86**, Program for the Solution of Crystal
- Structure Refinement, University of Göttingen, 1986.
- 27 SDP-PLUS, Enraf-Nonius, Delft, 1978.

Received 12th December 1996; Paper 6/08360I